
Political Science 210: Introduction 
to Empirical Methods

Week 5: Regression & Large-N Analysis



What can we learn from a large set of cases?

If we have a large set of cases (people, parties, countries) containing X, it gives us 
leverage to explore the X-Y relationship in some ways:

● Do X and Y covary?
○ We can compare across cases to see if levels or presence/absence of X is related to levels or 

presence/absence of Y
● Are there other confounding factors affecting X and Y?

○ We can “control” for variation introduced by other factors
○ But not a perfect approach: We don’t know if we’ve controlled for every situation; too many 

controls can lead to bad predictions and make results difficult to interpret.
● Is the relationship generalizable to other cases?

○ By definition, we’re studying average effects across many cases



What can we learn from a large set of cases?

But even a large set of cases can’t tell us everything about X and Y:

● Does X cause Y?
○ Can’t tell if X or Y happened first
○ Can’t check for reverse causality (is Y causing X?)
○ Don’t know the counterfactual or “potential outcome” for a given case: We can only compare to 

other cases that are different from the given case.
● What is the causal mechanism or the pathway connecting X and Y? What 

“story” are we telling that explains their relationship?
○ You could conduct further tests for mechanisms that fit your theory, but harder to get much 

within-case detail when studying across so many cases - you’d need a different approach.



Regression

Regression is an especially powerful and popular tool for measuring the 
relationship between concepts across a large number of cases.

Ordinary least squares (OLS) regression is a straightforward form of regression 
that attempts to estimate the linear relationship between concepts that produces 
the least amount of error when applied to a large number of cases.

In OLS, the Y variable is numeric, NOT categorical.
● There are other regression methods that allow for a categorical Y variable, but 

can only cover so much in one week.



Regression

The basic OLS regression formula can be written the same way that we might plot 
cases on a two-dimensional X-Y axis:

Y = a + bX

● Y is the outcome of interest (but again, we can’t prove Y is “caused”)
● X is the variable that we think can explain Y (but again, don’t know causality)
● a is the average value of Y when X is zero (the y-axis “intercept”)
● b is the amount that Y changes on average when X changes by one interval.



Interpreting beta

When X changes by one interval, what change will we see in Y, on average?

Y = a + bX

● Let’s say we want to know if the level of wealth in a neighborhood increases voter 
turnout.

○ Our cases are neighborhoods

○ Our Y (dependent variable) is voter turnout measured by percentage of VEP who voted in the last 
election, which we can learn from (e.g.) polling outlets

○ Our X (independent variable) is level of wealth measured by average income (in 1000s of dollars), 
which we can learn from sources like US Census data.

○ Let’s say we run our regression and find a beta of 0.2. What have we learned?

■ For every $1000 increase in average income, neighborhood turnout increases by 20%.



Interpreting beta

● Let’s say we want to know if getting a bachelor’s degree increases a person’s 
level of income.

○ Our cases are people.

○ Our Y (dependent variable) is a person’s level of income, measured in 10,000s of dollars

○ Our X (independent variable) is whether or not a person obtained a bachelor’s degree

○ Let’s say we run our regression and find a beta of 2.5. What have we learned?

■ A person with a bachelor’s degree (X = 1) earns $25,000 more on average than a 
person without a bachelor’s degree (X = 0).

■ The value of a represents how much someone without a bachelor’s degree earns.

When X changes by one interval, what change will we see in Y, on average?

Y = a + bX



Controls

Let’s say we add another independent variable, leaving us with two: X1 and X2.

Y = a + b1X1 + b2X2

● If X1 and X2 are not correlated with each other, then they each “explain” 
different types of changes, or variation, in Y.

● In this equation, b1 tells us “effect” of X1 on Y when we remove the variation in 
Y that is explained by X2.

○ This is also called “holding constant” X2 or “controlling for” X2.
● When used correctly, this can allow us to either “ignore” changes in Y that are 

explained by X2 and increase our confidence that we are measuring 
independent effects of X1.



Visualizing control

https://nickchk.com/causalgraphs.html

Say we have a set of cases 
with a positive (but fairly weak) 
correlation between measures 
of X and measures of Y.

But a third variable, W, is a 
categorical variable with values 
of either 0 (yellow) or 1 (black). 
We think it might explain some 
of the variation we see, 
independent of the relationship 
between X and Y.
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So to “control” for W, we 
subtract the averages of W that 
explain X and Y.

First, we subtract the average 
value of of W that best explains 
X…
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Visualizing control

https://nickchk.com/causalgraphs.html

After controlling for W, the 
correlation between X and Y is 
now stronger and it’s in the 
opposite direction (that is, 
negative instead of positive) 
from when we weren’t 
controlling for W!



Statistical significance

Statistical significance does not mean X is important for explaining Y.

Instead, it means that we are confident that the relationship between X and Y isn’t 
just due to random chance based on the sample we drew from the population.

So if a relationship between X and Y is significant, we will re-sample cases from 
the population and continue to find a relationship a certain percentage of the time.

● p < 0.05: We will continue to find an effect of X on Y 95% of the time
● p < 0.01: We will continue to find an effect of X on Y 99% of the time
● p < 0.001: We will continue to find an effect of X on Y 99.9% of the time.

Again, greater statistical significance does not mean X has a larger impact on Y. 
It’s about how confident we are that there is an actual relationship between X and 
Y in the “real world,” assuming our sample is randomly selected from the 
population of interest.



Other (better?) measures of error

Standard error
● Usually in parenthesis next to each beta coefficient (0.27)
● Reflects the degree of variation in your estimated average “effect”.
● Larger standard error means cases vary more widely in their X-Y relationship

○ Large standard errors means we’re less sure we’ll find the same average effect if we conduct 
the study again.

○ If our standard errors are large enough, we might just be measuring random noise

Confidence interval
● Calculated based on standard error

○ For a 95% confidence interval, multiply the standard error by 1.96 (or round to 2) and add to 
the coefficient for the upper bound, then subtract from the coefficient for the lower bound.

○ This tells us that when we select new cases to use in our model, our average estimates will fall 
within that upper and lower bound 95% of the time.



Beta Std. error 95% CI p

% who make 
more than nat’l 
median income

3.2 (1.05) [0.1 , 6.3] <0.05*

% who watch 
broadcast TV

0.9 (0.05) [0.8, 1.0] <0.001***

Intercept 1.3 (0.75) [-0.2, 2.8] <0.1

● Let’s say a state wants to improve turnout in an upcoming election.
● Election officials place television ads on major broadcast stations informing viewers about the election.
● However, levels of TV viewership is not the same across the state’s towns: Some towns are in more 

rural areas where signal reception is bad, and other towns have younger populations where residents 
are more likely to be watching programs streaming on their laptop instead of broadcast stations. 

● Officials also already know that towns with higher income levels vote at higher rates.
● After the election, officials test whether their ad had any effect through multivariate regression. The 

dependent variable is a town’s level of turnout, and the dependent variables are (1) the percentage of 
people in a town who make more than the national median income and (2) the percentage of people 
who watch broadcast programs.

1. What is the “effect” of a town’s 
level of income on voter 
turnout? What’s the “effect” of 
TV viewership?

2. Based on these results, what 
can we say has the biggest 
impact on voter turnout?

3. How certain are we that we 
would get the same results if 
the same referendum were 
held again?



Inspired by a well-known study by Gilens and Page (2014), researchers 
want to find out which group has the most influence on American politics: 
“Average” American citizens, economic elites, or organized interest groups. 
To find out, they collect bills that received roll-call votes in Congress between 
1980 and 2010 to use as cases. Using this data, they run four separate OLS 
regression models, with the outcome variable in each model representing 
the number of legislative votes in favor of each bill.

● Model 1 measures the preferences of “average” Americans through 
the % of median-income citizens who support each bill, according to 
survey data:

● Yleg. votes = a + bXavg.support

● Model 2 measures the preferences of economic elites through the 
percentage of upper-income citizens (top 10%) who support each bill:

● Yleg. votes = a + bXwealthy support

● Model 3 measures the preferences of interest groups through a set of 
organized lobbying groups that have openly supported each bill:

● Yleg. votes = a + bXgroup support

● Model 4 predicts the outcome on all three independent variables:
● Yleg. votes = a + bXavg.support + bXwealthy support + bXgroup support

Study Table 3 above and consider 
the following questions: 

● What did the researchers find in 
each of the first three models?

● What happened in Model 4? 
What does it suggest about the 
factors impacting policymaking?

● Is the design convincing? Is there 
any way you might change it?


